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SUMMARY

An analytic method for the design of automatic controls has
been developed that stats from certdn arbitrary criterions on
the behavior of the controlled system and gives those physically
realizable equations that the control system can follow in order
to reslize this behavior. The criterions used are developed in
the form of certain time inte~als.

General results are shown for systems of second order and of
any number of degrees of freedom. Detailed examples for several
cases in the control of a turbojet engine sre presented.

INIRODUCTIOIJ

In the past several years, there has been
ment and interest”in automatic control; in the
direction, guided-missile control, and control

increasing develop-
fields of gun
of gas-turbine

engines, for inste.nce,where very-refined and ac=ate controlled
behavior is required, need still.exists for further development of
the methods of controls analysis and design.

Recent developments in this field have been mainly concerned
with the problem of control analysis both in the realm of linesr

‘systems (reference 1) and in the realm of nonlinear systems (ref-
erence 2). These analytical works answer the following questions:
How will a given system behave or how is its behavior sff’ected
when certain constants in the system are changed?

Another problem of equal and, in some cases, ~eater hport-
ance is that of control synthesis. Work on this problem seeks the
answer to the following question: Given certain criterions con-
cerning the behavior of a controlled system, how should the system
be designed? ‘Theanswer to this question should give all aspects
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2 IMCA TN 2378

of the system; for instante, whether the systm should be linear,
what the general configuration should be, and what the precise
values of all the constants should be.

This synthesis problem has hardly been broached in literature.
Yhe use of anslysis as a design procedure offers a part~al.solu-
tion to this problem in that the analysis of a large number of cases
may reveal, coincident=, a case that satisfies the ‘desiredcri-
terions of controlled behavior. SUCh a method is, at best, long
aud tedious and almost always would result in compromises because
the systems chosen to be analyzed would probably be such that they
could never satisfy all the desired criterions.

A method for designing a line= system to satisti certain
special criterions when operating on a random input is developed
in reference 3. This method is applicable as an addition to a con-
trol system whenever random external disturbances are involved.
A pertkl. solution to the synthesis problem is developed in refer-
ence 4 in satisfying the criterions of noninteraction for systems
with many degrees of freedom.

An analysis made at the NACA Lewis latiratory and presented
herein develops a rational method of control synthesis that starts
from any srbitrary but physically realizable criterions and results ‘
in the equations for the best system that satisfies these criter-
ions. As is shown, the nature of the criterions, in general,
requires minimizing certain time integrals by using the calculus
of variations snd the methods developed are an application of the
calculus of variations to the problem of control synthesis.

A careful scrutiny is first made of the whole problem, fol-
lowed by a development of general results. These general results
are then ~plied in examples to the design of turbojet-engine con-
trol systems. = general, the methods used vary according to the
order of the differential equation describing the plant, the proc-
ess, or the system being controlled and according to the nuniberof
degrees of freedom or independent vwialle”s. Detsiled analyses
are presated for application to a system of first order and of
one degee of freedom. General.results for systems of second
order and any number of degrees of freedom =e developed in the
appendix.

— .—— -–—— –r-
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S’YME!OLS

i

a,b,c

c

The following synibolssre used in this report:

E

F,H

Fy(Y,;)

F(tl)

f,fo

fl,fz,,. . .

G)G1YG2

~

h

K

L,L1,L2

IT,P,T,wf

lie

n

t

W,y,z,
Flw,by,bz

gas-turbine-enginecharacteristicconstsnts

Constant

function of X

functions

indicates

indicates

arbitrary

weighting

ofyaudy

partial.differentiationwith respect to y
P

function

functions used for gas-turbine control
criterions

functions of y

function used for
.

function used for

controller gain

gas-turbine-engine

gas-turbine-engine

surge criterion

blow-out criterion

temperature limits for gas-turbine engine

deviations bf gas-turbine-enginespeed, compressor-
discharge pressure, characteristictemperature,
and fuel flow, respectively, from values at some
common equilibrium condition

actual engine acceleration

exponent

time

time at end of transient

variation in time at end of transient

independent variables, functions of time
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T

Subscripts:

o

f

s

superscripts:

*

small nmiber

arbitrsry constants

gas-turline-enginetime constant for response
temperature

transient time constsnt of controlled system

initisl condition of vsriable

final value of variable

setting or desired value of variable

indicates case Ufferent from optimum

The dot indicates differentiationwith respect to time.

The prime indicates differentiationwith respect to the
ment shown.

ANALYSIS

Survey of Problem

to

argll-

Control problem. - An important aspect of the control-synthesis
problem is a clear definition of the criterions of desired con-
trolled behavior. If a variable y is to be controlled, a reason-
able criterion is that the time integral of some function of y
istobeamhinmm or a COIISt=t j thd iS,

rtl

J f(y) dt = constant or minimum
o

(1)

.
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or

5

J (Y-Y.)2 dt = co~t=t or ~
o

(2)

Equation (2), for instance, weights the error in y as the square
and according to the time duration of that error. Another type of
criterion may be that which requires a certain time duration to be
a minimum or a constant; that is,

J’
*1

at = constant or minimum (3)
o

The use of a single criterion, such as equation (1), will.usu-

sJ.Q ‘field f(y) = constant. This result is ‘reasonablebecause
f(y) can usualllybe made identically a constant if no additional
criterions are imposed on other variables in the system. usually,
certain limiting conditions exist, however, on other variables in
the system and these conditions must be included in the original
criterions.

~us, a possible criterion could be written as follows:

for

J (Y-YJ2 at = I@liJmm
; ‘1(4)

J

tl

f(z) dt = Constsllt
o

Ifj for instance, y = engine speed and z = characteristicte?n-
perature of a gas-turbine engine, the criterion of equation (4)
states that it is desired to design a control system such that,
for a particular value of a temperature integral, the integral of -
the speed-erro~ squared is a minimum. This criterion msy be used
if, for instance, itis known that an over-temperaturecondition
can be tolerated for a certain period of time and it is desired to
keep the average speed error at a minimum - atrmiwt.

———. ——..-—— -—.—..———
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The gen=al theory will show that as msny criterions as
desired of the type -shownin equations (1) to (4) can he included
together and a control system can he derived that automatically
satisfies all these criterions simultaneously.

Another aspect of the control criterions is the end conditions
of the integrals of equations (1) to (4). The time interval for
which these integrals are to be a minimum or a constant rmmt be
chosen. A reasonable time interval is any duration during which
essential ‘exkrnal disturbances are constant and during which the
system to be controlled moves from one essentisl level of opera-
tion to snother. The essentisl external disturbances =e those
that cannot be tiediately corrected by the control system. If an
essential external disturbance were allowed within the the inter-
val of the criterions, no physically realizable system could be
expected to anticipate this disturbance so as to behave properly
before this disturbance occurs. An essential level of operation
is any specific condition of only those variables that nmst be
continuous. It wi31 be shown that the essential.level of opera-
tion appears as a natural boundary condition for the type of cri-
terion used. ~ the case of a turbojet engine the transient
behatior of which can be described by a first-order differential
equation, the engine speed determines the level of operation. If
a lag exists in the fuel system or between temperature and engine
speed, then both engine speed and acceleration are required to des-
cribe the essentisl operating level of the engine.

-ic problem. - ‘l!hecontrol system resulting from any
design method must be physically realizable. TMYe are two aspects
to thiS problem. First, it is possible to set down criterions that
are not realizable with any system or exe incompatible with each
other. If such criterions sre used, the unrealizabilitywill
appear either as a requirement on the control to look ahead into
the future or as an inability to satisfy the boundary conditions
of some differential equation. In most cases, a clear underspend-
ing of the criterions used and of the system to be controlled will
indicate incompatibilitiesof this sort.

The second aspect of physical realizability is purely mathe-
matical.. It is desired to dez%ve a description (a clifferential.
equation) of the control or the controlled system that satisfies
the criterions of control and all the necesssry boudary ~conditions
that arise in the d&vation of this equation. Although the mathe-
matical solution of the problem may be any derivative or integral
of this differential equation, the physical solution of the prob-
lem requires the differential equation that itself satisfies the
boundary conditions and for which no undetermined constants of
integration exist. Thus, such forms as

.

—— —
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.
Y = c;

~d

}

(5)

Y = Cx

are not necessarily interchangeableas descriptions of some pert of
a controlled system because the forms differ by an undetermined
constant of integration. For stable linear systems, the effect of
this constant becomes vsmishingly smsll; for the general nonlinear
systems presented herein, however, this constant must be considered.

Stability problem. - The requirement of stability is a special
criterion that does not enter into the main body of the methods of
this report. It may enter in the final steps of the method where ‘

. the final differential equation describing the controlled system
msybe the integral of a higher-order differential equstion that
satisfies the necesssry boundary condition for stability. In addi-
tion, it is always necessary to add to the controlled system a
stability detice that does not sffect the behavior of the system
as far as satisfying the other criterions is concerned. This
device can be described as follows:

when

Y=YS

then

i =0 }

or, for a second-order systemy

when

and

then

It has been
developed in the

Y=YS

;=0

. .
Y =0

General.Theory and Results

(6)

(7)

shown that the criterions for control can be
following forms:

.——.—-z —- ——--
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tq

J’f(y) dt
o

p%

Jo (Y-Y~)2 at

t~

J fo(z) at
o

t~

L/’at

o

(8)

and so forth. If, for such a list of criterions,
grals is to be a minimum under the condition that

one of the inte-
the other integrals

are to be constant, it is sufficient (reference 5) to make

J%f(,).t+~r(y-ys)2 .t+’2ffo(z)dt+’31’dt=~-

(9)

or

tl

J’[ 1
2 i-h2fo(z) +x, dtf(Y) +AJY-YJ =minimum (lo)

o

The Ats are arbitrary constants that enter introthe control sys-
tem as the a&justable parameters snd sre precisely determined by
the choice of values that the constant integrals are to have.

The technique of the 1 multipliers is widely used for prob-
lems of this type where one condition is to be a minimum under
other restrictive conditions. Indeed, the conditions need not be

— .—— — -.—— -. -—— . . . . .
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in integral form and any
variables can be handled

functional or differential relation amng
in ‘asimilsr manner (reference 6).

Equation (10) can be made very general when all possible
restrictive conditions are included. In the final equations, which .
are derived later, if any one criterion is not to be used, then the
corresponding A+O. If my of the criterions are to be zero (as
for the case of a variable having an absolute limit), then the cor-
responding l+%

If, for this development,the system to be controlled is of
first order and of one degree of freedom (h&s one independentovari-
able), then the variables y snd z are such that’ z = z(y,y).
Equation (10) can then be written, in general, as

t~

J
F(y,j) dt =midmum (U)

o

In equation (lI.),F is a continuous function of y aud ~, and
y is a continuous function of time.

The calculus of variations (reference 5) is used to determine
y as afunction ofttie such that-the integralof equation (Xl)
is a minimum; that is, if the solid curve of figure 1 makes the
integral a ~~ w other tie (such - the dashed one) will
make the integral equal to or greater than the first integral. If
the two curves are very close, the condition that the two inte-
grals sxe equal will make the integral of equation (1.1)stationary

(mlxdmum, mimbnum, or inflection point).

The problem is similar to that of finding the maximumor mini-
mum point on a curve by setting the first derivative equal to zero.
Whether a maximum or minimum point exists-is decidedby the second
derivative at that point. In the variational problem, proving a
true minimum involves taking the “second variation.” As in the
problem of finding a minimum on a curve, the second variation proves,
at most, a local mLnimum and not an absolute minimum. For the
specific examples discussed
by another method. In many
equations will indicate the
obviates going further than

herein, an absolute minimum is proved
cases, the physical meaning of the
existence of a unique minimum that
the “first variation.”

,
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On figure 1, the curve for minimizing the integral of equa-
tion (n) is the solid curve having the value y(t) at any time.
Any other curve differing from it by a small amount is shown as the
dashed curve ha- the value y(t) +E by(t) at any time, where
e is a small number and 5y(t) is an arbitrsry continuous func-
tion of time. The-condition for the integral of equation (U_) to
be stationary is

at

where ~[5y(t~ =bt(t) (reference). Thetime duration for
dt

the integral of equation (12) is such as to start at so~. definite
time (t=O) but not to end at a definite time but rather along
some curve y = f(t) (fig. 1), in order to allow the proper bound-
ary conditions of mming from one essentisl level of operation to
another, as previously discussed.

Performing

Integrating the

tl

J’[o
‘Y

Because ?IY is

the operation indicated by equation (12) leads to

s1

)?Y@ dt +
o

F; 5; dt + F(tl) Ml = O (13)

second term of equation (13) by parts gtves

1tq

m
boundary-c&dition
the end condition

arbitrary function, the integral

MI = o (14)

and the
terms m& vanish separately: The geometry
(t=tl, fig. 1) gives

Rt

.

.

—
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[ 1by(tl) = f’(tl) - ;(tl) &t~ (15)

as C+O. The two conditions that follow from equation (14) then
become

and

J2--A5Y..=0(16)

[ 1F(tl) +Fj(tl) f’(tl) - i(tl) -F;(O) tjy(0)=0

The time interval during which the criterion
is to hold is considered as that during which the
one essential operating level to another; in this

(17)

of equation (n)
system moves from
case, from one

definite value of y to snother definite value ‘of y. Thus,

by(o) = o

and

“}

(18)

f’(t~) =0

Equation (16) is satisfied only if the integrand is zero, and,
because btl# O, the two conditions of equations (16) snd (17)
become

* (F;)
‘Y = dt

(19a)

and

F(tl) =Fj(tl) j(tl) (19b)

13qudion (19a) need not hold at t = O because 5y(0) = O. me
only condition that need hold at t = O is that F;(O) is finite,

tiich will be true if y is continuous at t = O. At the stsrt

.———__ ._— .—._ —
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of a new transient, ~, F, Fyj and F; msy be discontinuous,

whereas at other points (0 < ts tl) F~ ~~ be cont~uous

because of equation (19a).

.

to

8,

Equation (19a) is the differential.equation for the y(t)
that satisfies the original criterionof equation (lL). The physi-
cal enswer to the problem is the first integral of equation (19a),
which satisfies the boundsry-condition’equation (19b). This solu-
tion is

F(y,i) = jF~(Yjt) (20) “

and whenever y) l?~ and so forth, ‘arecontinuous>

[
+ Fy

1
-&F$ =0 (21)

hy differentiatingequation (20) with respeti to time. Thus,
either ~ = O (which is only true during stability) or equa-
tion (19a) is satisfied.

Thus, equation (20) is the description of that physically
realizable system the behaxior of which will automatically and
simultaneously satisfy those criterions included in the function F
during that time intervsd.for which the external disturbances are
constant and dnring which the system goes from one operating level “
to any other operating level. A stabi~ty device must be added to
the system; the description of such an idesl device is as follows:

when

Y=YS

then
1

(22)

An additional condition must be met if ~ is discontinuous in the
fiterv~ o -=t < tl. h this case, F~ must be continuous during

the discontinuity in ~; F~, howev=, willlusually be discontinuous

when ~ is discontbuous. This discontinuity in F; usually

means that some essential external disturbance has entered the sys-
tem and the point of discontinuitymst be the stsrt of a new time
interval●

———
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Application to Turbojet-Eugine Controh

In the usual case of desiguing turbojet-engine controls, the
engine syeed that sets the essential operating level of the engine
and, in the resin,oth= pertinent characteristics such as thrust,
is to be set or controlled. Limiting conditions of the engine sre
those of overspeed, overtemperature,compressor surge, and rich
burner blow-out. The following criterions on the behavior of this
-e are typical:

—

r‘1

-J fl(IJ-Ns)dt; for speed control
o

t~r fO(N) dt; for speed overshoot
Uo “

tl

J’f3(T) dt; for temperature
o undershoot

tq

Jo f4[p-~@@for

tl

J’o f5[p - h(N~ dtj for

tq

J’dtj for rise time
o

Figures 2(a) to 2(e) show the nature

overshoot and

comressor surge

blow-oti

(23)

of the functions appearing in
equation (23). The vsriable involved is essentidlyw eightedby
the function shown and integrated with respect to the. The quan-
tity P - g(l?) is the smount the compressor-dischargepressure
exceeds the safe pressure for surge and g(N) (shown in fig. 2(f))
is the compressor-dischargepressure for each engine speed at a

13

.— ————— —— --—-———————
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safe value below surge.
Similar manner (h(~) iS

Rich burner blow-out
shown in fig. 2(g)).

the total.time for the system to nmve from one
level to the other.

The linesxized engine characteristics can
assuming first-order behavior, ss follows:

T=dJ+aai

P=bN+cT

Thus, the integrals of equation (23) are

tl

J

.
f(I?,N)dt

o

where f is a continuous function of N
impulsive temperatures and the like) is a
time.

~eed control: case A. - If onlv the

TMCATN 2378 ‘

can be handled in a
The rise time is
essential operating

be expressed, by

(24a)

(24b)

a31 of the form

(25)

.
considered important, the criterion becomes

.
and 1?,and N (barring
continuous function of

error in speed control is

-q

J’.fl(N-N~) dt =minhum
o

(26)

where F = fl(N-Ns). Equation (20) becomes

f~(J?-I?J= o

1’
and from the na~e of fl (fig. 2(a)),

[
(27)

N=NS J
This result means that, in the absence of other criterions on the
engine behavior, this speed control should keep speed.error identi-
cally zero, which is physically realizable only in the sense or
allowing infinite te~aatures and the like to keep the speed error
identically zero. This result, however, is inconsistent with the
previous development of equation (20)in that N is now a

o

m
m
8,

.
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discontinuous function of time
gral of equation (26) is zero.

snd tinetime interval of the inte-
TMs instance is actutiy a tritial.

case of the general problem. The result (equation (27)) does indi-
cate that a &iterion like that of equation (26) must be accongyanied
by an additional criterion (temperatureovershoot, for instance)
to give a physically realizable system.

Speed control with temperature-limitingcriterions; case B. -
If the error in speed control and the overshoots snd undershoots
in temperature are to be considered as the primary criterions of
control, then from equations (10) ad (lI.),

tq

h fl(N-Ns) +
o

where F = fl(N-N~) + ~ f3(T).

1Af3(T) dt= minimum (28)

Equation (20) then becomes

fl(~-N8) +~ f3(T) =~ au~f3’(@

and the ideal stability device is such that

when

N=NS

then

i=o }

Equations (29) and (30) describe the complete

In figure 2(c), it is convenient to let

(29)

(30)

control system.

f3(T) = (T-L2)n for

T>L2 end f3(T) = (T-L1)n for !T.~. In general, the power n

should be ‘1, because, when n s1, T may be infinite and of such
nattie as to make N discontinuous md physically unreal even

tl

though
J

f3(T) dt is finite. In the examples of this report,
o

n= 2 and fl(N-Ns) = (N-IVs)2.

— .-——.— ———. .-..—— . . . ..— .
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A variety of methods of setting up the control system to real-
ize equation (29) exist. When the preceding expressions for f~

and f3 are used, equation (29) csn be put in the convenient form

where, for
L
.

(N-IT8)2

A
+ (L-aN)2 = a2a&

acceleration,when N < Ns, then I

~>() andL.L2 ( (31)

snd, for deceleration,when N > Ns, then

&O andL=~
J

A s“dmnstic diagram of the system is shown.in figure 3, where
equation (31) is considered to give a desired N for any value
of N, Ns, and L. Consistent with equation (31), a ri@t-trisngl.e

construction is used.to give a desired N. The actual N can be
made very close to N by using ahigh-gain yroyortional controller,
as shown. Frotision must be made to change the sign of N and
the value of L when N-I?* changes sign. In addition, the sta-

bi~ty condition req@res a provision for msking fi= O whenever
speed error is very small or zero.

The use of a high-gti.proportional controller, which follows
from the requirementthat N maybe discontinuous,means that the
fuel-flow rate required msybe infinite if lags exist in the fuel
system or in the feed-backs. But, as no criterion has been set on
&el-flow rate, this requirement &es not violate the original
criterions. If necessary, however, a criterion on fuel-flow rate
may thenbe addedto eqqation (28). Even though a criterion on
t~erature is being satisfied, figure 3 does not use any direct
measurement of temperature. Actually, the equation for tempera-
ture (equation (24a)) is used as an initlrectindication of
temperature.

The control system of figure 3 has one adjustable parameter
For any value of ~ this system will, for the value of integral
temperature-overshootsquared obtained, give the m@imum value of
integral speed-emor squared. The value of I determines the
actukl value of the integral temperature-overshootsquared.

— ——— -——- .— —— —.— —.–-. —...—. —._____ .— —
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.

The integral temperature-overshootsquared’as a function of A
is shown in figure 4 for the”special.case where ENS = L; that is,

acceleration or decelerationto the speedthat correspondsto limi-
ting temperature. In this case, the system of figure 3 becomes a
simple first-order lag system and equation (31) becomes

E(L-aN) = ~ “ (32)

where

In figure 4, the integral speed-error squared, the maximum
temperature, and the time constant for this transient are also
shown as functions of X. A curve showing the min3mum rise time
for the corresponding temperature
son that will be discussed later.
figure 4 are as follows:

J( )
2

1 T-L-—
u L-sNo

integrfi is included for compari-
The equations for the curves of

~t _ (E-1)2_—
2E

1

soa2 N-N8 2
—— dt =.&
a L-a?$o

T--L
—= E
L-sNO

-1

(time constant) ~ = *

t

(33)

/

J
The left side of these equations have been put in dimensionless
form. The maximum temperature T- occurs at the beginning of

the transient. The time constant T is that for the controlled
system and is shown compered with the engine-time constant cr.

From figure 4, the value of A is chosen as a compromise
between the various quantities of equation (33). For E = 1 (A=-),
the temperature does not overshoot, the speed integral is 0.5, and
T ~.= As E increases (X decreasing), the temperature integral

o

— ————- -. —.. ___ ____
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and the

and the

NACA TN 237~

maximm temperature increase, whereas the speed titeeal .

time constant decrease. A value of E = @ (a2h = 1)
appesrs to be a good comprcmd.seand is used for,the subsequent
discussion.

The behavior of the system of figure 3 can be best seen by
drawing t~e trajectories in the phase plane shown in figure 5,
where auN is plotted against aN for lines of constant aNs
according to equation (31). Lines of constant temperature are
45° parallel lines in this plot and the lines of T = L are shown.
Each trajectory intersects, and is tsngent to, the line T = L at
N = IQ. Figure 5 coqpletel.ydescribes the transient behavior of
the system. For any starting point anywhere on the plsne (for
instsnce, point A), the system will automaticallymove the oper-
ating point to that trajectory correspondingto the N~ that
etists (point B) and then along this trajectory to the point T = L,
(N = Ns, point C), and finally the stability condition will enter -
to nmve the operating point along the solld vertical.line to
N= O (point D).

The time sense for these transients is obtained by solving
the differential equation (equation (31)) for the speed and the
temperature time responses. The equations for these solutions are
a. fOllows:

(34)

These transients are shown in the g~ral case in figure 6 for a
step increase in Na. lkxhnn temperature occurs at t = O and
the temperature overqhoot decreases as N increases and when
H= N8, T =L and T=O. The stability condition then causes T
to drq to its equilibrium value at this point. The time scale
shown in figure 6 corresponds to the ~ecific relative values of
the ordinates shown.

Min3mum rise time and temperature-limitingcriterionsJ case C. -
M order to obtain a pinimum rise time for a constant temperature
inte~sl, the requirement is that

Q

.

—
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1.9

where F = 1 + Af3(T). Equation (20) becomes

1 +1 f3(T) =Awfi f3’(T)

and the ideal sta%ility devtce is such tht

when

then

(36)

(37)

where Ns is the desired stable N. Equations (36) and (37) des-
cribe the complete control system. Equation (36), snd therefore
the control system proper, does not include Ns sm., in th$s case,
the stability device is independent of the control system proper.

When the same f3(T) is used as was used in the previous
case, equation (36) can be put in the convenient form

~ + (L-aN)2 = a2u%&’

where, for acceleration,when 1?<Ns, then

~>0 snd L=L2
I

(38)

ad, for deceleration,when N > l?s,then I
i<O ~dL=L1 J

A schematic diagram of this system satisfying equation (38) is
shown in figure 7. This control system is the same as the previous

N-N8
system (fig. 3) except that in figure 7 — replaces —

~ .fi”n

. .

—— —..— .—.———.—_— ———.— —— — ——.—— ..— ____
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one leg of the
dition must be
not enter into

right-triangle construction and the stability con-
imposed outside the control system, as Ns does
the criterion of control (equation (35)).

T’& system of figure 7 has one adjustable psrameter ~ which,
as before, sets the precise values of the integrals entering into
the criterion (equation (35)), as well as dl other behavior
characteristics. \

The temperature integral is shown in figure 8 as a flulction
of X for the special case where alfs= L; that is, for accelera-

tion or deceleration to the speed that corresponds to limiting tem-
perature. In addition, the rise time, the maximum temperature,
and the integral.speed-error squared are shown for this transient.
A Curve pbowing the minimum speed integral for the corresponding
temperature integral (from case B) is also shown and will be%is-
cussed later. The equations for the curves of figure 8 are c.s
follows:

\
tl

1-h)T-L 2dt e_l

c
o

L-sl?() = (L-d?o)~A

(39)

Again “X is to be chosen as a compromise between these vsrious

quantities. M this case, ~ has the units of temperature

and @( L-aNo) is the pertinent dimensio.plessparameter. For

.

.

—— —
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a fixed A, the initial speed No tin therefore change the time

integals and an increaaed L-aNo will decrease the temperature

integral and the maximum temperature and increase the rise time
and the speed integral.

The dynsmic behavior of the system of figure 7 is.shown in the
phase plsne in figure 9. This figure is a plot of auN again9t d?,
according to equation (38), for various values of A . Lines of
constant temperature sre 450 psrallel lines and the lines ‘1= L
are shown. For any fixed A, only two trajectories sre followed:
one for accelerating and one for decelerating. From any stsrting
point on %he plane, the system will automaticallymove to that
trajectory correspondingto acceleration or deceleration and will
move along this trajectory until the stability condition enters
(at N=NS) to make N=O.

The dependence of the time integrals on No maY require 1

to Vary with NO. In figure 9, No’s correspondingto each A sre

shown such as to keep A(L-aN0)2 = 8. The value of this psrameter

was taken so as to have the temperature integal in this case
equal to that of the previous case for purposes of comparison.

The time sense for these transients is obtd.ned by solving
the differential equation (38), for the N-t and T-t transients.
The equations for these solutions are as follows:

fi(aN-L)=sia&+c)~

fi(l!-.)=e~+c) j’ (40)

These transients are shown for the general case in figure 10 for a
step increase in I?s. The temperature will j~ to some value
above L, but in this case, unlike the previous case, the tempera-
ture continues to increase a8 the speed increases. Maximum tem-
perature occurs at the end of the transient. Whenever N = Ns,
two such conditions are shown, the stability condition takes over
end T is reduced to its equilibriumvalue. The time scale shown
on figure 10 corresponds to the specific relative values of the
ordinates as shown.

Comparison of cases B aud C.
that, for a constant value of the
squared, gives a minimum integral

- In case B, a system was detised
integral temperature-overshoot
speed-error squared. In case C, a

.

—— ____ ..— ——- ——. - - —-.- —— - —————T— -——- —. ——— .-— —— —
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system was devised that, for a constant temperature integral,
gives a minimum rise time. For case B, the rise time is not a min-

I imum hut csn be compsred with the minimum rise time of case C.
For the special transient of accelerating to T = L, the system of
case B reduced to a first-order system the time constant of which
is shown in figure 4. Because five time constants sre considered
as the rise time of an exponential, the time constant of case B
should be compared with one-fifth the minimum rise time of case C.
~ figure 4, for correspondingvalues of the temperature integral,
one-fifth the minimum rise time from case C is plotted. Figure 4
now shows that the rise time for case B is about twice the minhum

~ossi%le rise time.

At correspondingvalues of

p%

J
(N-Nf)2 dt for case C can

o

possible value of this quantity

P%

of
.J

(N-Nf)2 dt is plotted
o

the same temperature integral,

●

the temperature integral,

be compsred with the minimum

from case B. me minimum value

in figure 8. It is seen that, for

r

1

(l$-Nf)2 dt when minimum
do ‘.

rise time is obtained is about 120 percent of the minimum possible
tl

value of
J

(N-Nf)2 dt.
0

Proof of absolute minimum. - As
zation of equation (11) involves not
first variation be stationary, which

previously noted, the minimi-
only the condition that the
leads to equation (20), but

-o that the second vsriation be positive. This second condition,
however, would prove, at most, a local ~ for the condition
of equation (Xl). A special.proof of an absolute minimum iS shown
as follows:

If equation (Xl.)is writien

J

Yf

F(y,;)

Y()

in the followi@ form:

0Y =minlmum (41)
Y

.

—
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and ~ is.considered as a function of y for the minimum condi-
tion and Y is considered as a function of y for sny other pos-
sible case, then the condition for sm absolute minimum is that

or

(43)

where dy/@ is apositive differential. I: the function F is
considered in a general form, quadratic in y, as follows:

F(y,j) =G(Y) +;%(Y) +;2G2(Y) ‘ (44)

(45)

The equation of the con~ol system (equation (20)) becomes,
for the formof F assumed in equation (44),

using this

i2 G2(Y) ‘-G(Y) (46)

expression for G(y) puts equation (45) in the form

(47)

22 were h~”.For cases B andC, G2 =Aa u Thus an absolute mimi-

mum is proved for these two cases.

.

.
- -..— - .-— -.. -—— — —. . . -— .——
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DeWee of ndnimum$ case B. - The left side of equation (47)
can be used as a measure of the deviation from optimum conditions
wQen the methods of this repo~ sre not used. If the two cases
(N for the optimum case and N+ for any other case) are compared
at the ssme value of the temperature integral, the left side of
equation (47) is the clifference between the integral speed-error
squared for any case and the minimum possible value of this quantity.
The ratio of this deviation to the mimimum value becomes

Fractional increase
in speed integral =~Jyo(~~

for the transient of acceleration or deceleration to 13miting tem-
perature. The coef??icientof the integral of equation (48) for

the value of A previously chosen (az~ = 1) is 2@.

Case B can also be considered as giting a tihmm value of
the temperature integr~ for any definite valu$ of the speed inte-
gral. If two cases (N for the optimum and W for any other
case) are compared at the ssme value of the speed integral, the
lef% side of equation (45) is proportional to the difference
between the integral temperature-ove~shootsquared for any case
and the minimum ~ossible-value of
can be written .as

Fractional increase in
temperature integral

for the transient of acceleration
perature. The coefficient of the

this qusxltity. This de%ation

J7()
f

2E —2*P -T
(49)

= (E-1)2 YO Tf-T &

or decelerationto limiting tern-,
integral of equation (49) for

the value of A previously chosen (a% = 1) is 16.4.

Degree of minimum, case C. - If the two cases N end W are
compared at the ssme value of the temperature integral, the left
side of equation (47) is the clifference between the rise time for
any case and its minimum possible value. This deviation can be
written as

.

——-—.—— ——— —— .———



4 WLC!ATN 2378 25

n

Fractional increase . 1 (L-aNo)’

in rise time
sinh-lfi(L-@

(50)

for the trsnsient of acceleration or decelerationto limiting tem-
perature. me coefficient of the integral of equation (50) for
the value of fi(L-aNo) = 26 previously chosen is 4.54.

Case C can also be considered as giving a minimum value of
the temperature.integr~ for any definite value of rise time. If
the two cases N and N* are now compared at the same value of
rise time, the left side of equation (47) is proportional to the
differencebetween the integral temperature-overshootsquared for
any case and the minimum possible value of this qusntity. This
deviation can %e written a9

Fractional increase in
temperature inte~al

for the transient of acceleration or decelerationto limiting tem-
perature. The coefficient of the integral of equation (51) is 16.4
for the value of fi(L-aNO ) previously chosen.

GENERAL SUMMARY

When the criterions on the behavior of a controlled system can
be expressed in certain general forms, as follows:

-.— —.——. -—..— .-



26 lWC!ATN 2378
.

P%

J f(y) dt
o

Lr1 (Y-Y.)2at
o

t~

J fo(z) dt
o

J
‘1

dt
o

(8)

where the time interval is taken as any duration during which
essential external disturbances are constant and during which the
system moves from one essential operating point to another, the
optimum control can be considered as one that minimizes one of the
integrals of equations (8) while maintsin.ingthe other integrals
at prescribed values. The analytical problem, according to the
calculus of variations, reduces to the following equation:

For general first-order
reduces to

where F

sary for
bounwy

dt +A2
J

fo(z) dt + A3
J

dt = ~~
o 0

systems, where

J F(y)j) dt = minimum
o

= f(Y) + A1(Y-Y8)2 +X2 fo(z) + A3.

(9)

z = z(y,~), equation (9)

(u)

‘Theequation neces-

the control system to satisfy equation (n) and all the
conditionsbecomes

F(Y,t) = j F~(YJi) (20)

to
m
8

—— .–— — ——.-
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This equation’should be followed by the control system proper. In
addition, a stability device must be added.to the system,the ideal-
ized chsmcteristics of which would make y = O when y = y=.

The arbitrary multipliers x ere then foundby evaluating
the integral criterions involved in F. The transient behavior of
the system derived is found by $olving the differential equa-
tion (20). The degree of the minimum or the amount suffered when
any other control system 1s used was evaluated for the special
cases considered. A summary of these developmen~sfollows for a
special form of the F function, quadratic in y, where

tion
Control-system equation. - For F in the form of e@a-
~44), the control-systemequation (20) %ecomes

#=-
2

(52)

The function ‘Gl(y) does not effect the control system and the

control-systemequation gives an explicit expression for ~ as a
function of y.

Evaluation of integrals. - If an integral of a func-
tion H(y,t) is any one of the criterions to be considered, it can
be evsluated as follows:

f% ~Yf * _

J
—

Ii(y,;) dt
o ‘JYOH IYJ%IJ-W ‘“)

Thus the integra3s csn be evaluated without
tial equation (52).

Transient behavior. - The differential
eaaily solved as follows:

l;J-G2(x)

—dx=t
G(x)

solving the differen-

equation (52) can be

- to (54)

.——.-— .Z — — -.
—— —— — —
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Degree of minimum. - Equation (47) was derived to prove the
absoltie minimum for the special cases considered and can be used
to evaluate the degree of the nrbimum found. Thus,

r%
J H(y ,x) dt* -
0 J o

t~

&ere r H(y,i) dt iS

do

If G2(y) >0

obtained; if G2(Y)

obtained. Equation
(or maximum) varies

for

<0

(55)
with

pyf n

-JYOG2(Y)[i(y)+’%H(y,;) dt -

(55)

to%eaminimum ormadnmm.

Yo~Y<Yf3 then an absolute minimum is

for YO ~Y~ Yf~ an absolute maximum is

also indicates that the degree ?f minimum
the magnttude of G2(y). The w in the ~

denominator indicates that for any detiaticp 1~-~ I in ~, it is “

letter to err on the side of a larger I~ 1. - -

SUMMARY OF RESUUI’S

A rationsl analytic method for the design of automatic con-
trol systems has been derived. Criterions on the behavior of the
controlled system were developed in the form of certain time inte-
Wals . When auy of these arbitrsry but physically realizable cri-

,terions were used as a starting point, those equations that the
control system must follow were derived. The criterions developed
required the minbization of certain time integrals using the cal-
culus of variations. The method gave not only a description of
the behavior of the controlled system but also gave those physically
realizale eqmtions that the control system can follow in order
to realize this behatior. General results were shown for systems
of second order and of any number of degrees of freedom.

Lewis Flight Propulsion Laboratoryj
National Adtisory Committee for Aeronautics,

Cleveland, Ohio, October 11, 1950.

—— —.—— — ——-.
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SECOND-ORDERSYSTEMS

It is beyond the scope

APPENDIX

OF SEVERAL DEGREES OF FREEDOM

of this report to detail the cases of
higher-order systems and those @ving several independent variables.
The general equations for these cases will be developed and it is
expected that subsequent reports will cover their applications in
detail.

For the case of a second-order system with two degrees of
freedom, equation (n) becomes

tlr
J ?i’(y,j,;, z,i,;) dt = minimum (Al)
o

where y and z are independent functions of time. The condition
to satisfy equation (Al) is .

The time duration of the integral of-equation (Al) is tha~ begin- .
ning at a definite time (t=O) but not ending at sny definite time

but rather along some curves: y = f~(t), j = fz(t), z = gl(t),

and;= f32(t) (fig. n). The functions by and 5Z are arbi-

trary and independent functions of time.

Performing the operation indicated by e~ation (A2) gives

r

1

(Fy6Y+Fj 5j+F;5~+Fz5z+F;51 +F~tii) dt~F(t1)5t1=o
o

(A3)

—.— —.—.— _—-_ ——— —-—— ———-.
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AHer inte~ation by parts~

NACA TN 2378

[
F;

(A4)

AS before, the integands of the integrsls and the boundary-
condition terms must vanish separately. From the geometry at the

I

The three conditiou from equation (A4) then become

,

(M)

.
.— —.— — —--
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.

.

Fz d2-&F~)+- (F~) = O
dt2

.

(A6) r

The first two of equations (A6) ere the clifferentialequat-
ions that satisfy the original criterions of equation (Al.). The
physical solution to the problem is the pair of solutions of these
equations that satisfy the bounti~-condition equation of equ~-
tion (A6). If the $irst of equations (A6) is multipliedby y
and the second by z and the equations are added, an exact deriv-
ative is formed the integral of which is as follows:

A study of the
shows that the
as follows:

boundary-condition equation of
physically reasonableboundary

equation (A6) then
conditions should be

——— —.—
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If F; # O or Fy# K, then 5Y(0) = O and fl’(tl) = O.
1

If F;+ O, then 8~(0) = O and f2’(tl) = 0. ‘
\

If F; #O and F~+K, then ~z(o) =0 and gl’(~) =0. I

If F~#O, then 5;(O) =0 and gz’(tl) =0. J(A8)
Then in equation (A7), C = O and the final solution to the

problem of equation (Al) for the boundary conditions of equa-
tion (AB) is as follows:

and either I
d2

‘Y
-&F~)+- (Fy) = O

dt2

or

The mesdng. of the boundary-condition equation (A8) is to
define the original criterions for that duration durhg which the
system moves from one essential.operating level to another. Thus,
if all conditions of equation (A8) must hold, the system goes from

one definite y, ~, z, and ~ to any other definite y, ~, z,

and ~. The first differential equation of equation (A9) would be
of third order smd the second or third equations of (A9) would ‘be
of fourth order. If equations (A9) are integrated to obtain a
pair of second-ord~ differential equations having three constants
of integration, the choice of these three constants can then deter-
mine a desired end point; that is, the vslues of ~, z, snd ~ at
some final. y.

The physical solution to the problem, then, is the pair of
second+rder differential equations that sre solutions of equa-
tion (A9) aud the constants of integration of which are evsluated

.— ——
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.

so that the system
point must be such

33

goes through some desired end point. This end
aa to allow the possibility of stability. 8uch

m end point msy be written as follows:

when

Y“Y~

then

;=0

I z =
=s

.
z = o

which gives three conditions for the evaluation
stants of integration. A stability device must
the system so that,

of the three con-
sti~ be added to

at the point &en equation (AIO) holds,

Y=

and

Equations (A9)
which indicates the

.0

z =

=e symetric
nature of the

(A1.o)

(All)

o J
in the variables y and z,
extension for mme independent

v=iables. Thus, if a third independent
original criterion would ye written as

function w exists, the

=minimum (A12)

This condition is satisfied under boundary conditions similar to
eqyation (A8), where two additional conditions exe added on the
variable w and the following equations describe the controlled
system:

.—= — — ——.— -— ——



34 NACA TN 2378

I
and any two of the following three eqpations: I

~2

‘Y
-~(F;)+— (F;) = O

dt2 \ (AM)

F=
d2

-$(F~)+— (F;) = O
dt2

d2 -
Fw -: (F;) + ~(F#=o ~

,.1

The three equations of eqyation (A13) can then be integrated to
give three second-orderdifferential equations where the five con-
stants of integration are evsluated so that the system goes through
the desired v~ue

1.

2.

3.

4.

5.

6.

Anon.: Theory
Nichols, ad
Inc.; 1947.

Minorsky, N.:

of ~, z, ~, w, ~ for some fti value of y. -
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/

y=f(t)

‘1 =s=

J

tl

Figure 1. - Illustration,of curves for minimization of F(y,~) dt.
o
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.

(a) Speed control. “

L_
L1

-1
L2 T

(c) Temperature overshoot
and undershoot.

(e) Blow-out.

Figure 2. -

.

NnAx N
(b) Speed overshoot.

fh[P- :N)]

L
0 P-g(N)

(d) Compressor surge.

, ,
N N

(f) Compressor line
‘glef%p;y%%u+vebelow surge.

Arbitrary weighting functions for various control trite-rions
and pertinent engine characteristics involved.

8
E

.
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T
L-aN

1

,..
When N > Ns, N < 0 and L=L1

v
Figure 3. - Schematic diagram of control for turbojet engine for -

case of speed control with temperature-limiting criterions
(case B). Stability device must be added to this system.
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F@ure 5. - Phase plane showing dynamics of controlled syei%m for speed control with temperature-
limiting crlterione(caBeB), where a% = 1.
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Figure 6. - Typical transient of controlled system
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for speed control with
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T
L-aN

~>O’~d L=L2When N< N~,

When N>. N~, fi<Oand L.Ll

41

Figure 7. - Schematic diagram of control for turbojet engine for
minimum rise time with temperature-limitlng criterions (case C).
Stability device must be added to this system. ‘
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Temperature integral = ~
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a2(N0-N~)2

J

(N-Nf )2
Speed integral - ~ dt
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tl

Rise time - ~

/

/ ~
~

~ Min. speed integral

Tempera ture Integra 1

8 1.0 1.2 1.4 1.6 1.8 2.0

fi (L-W())

Figure 8. - Various oontrol parameters as function of X for minimum rise time with
temperature-limiting criterions (case C), when accelerating to limlting temperature.
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Figure 9. -
time with

\
\

\

\

@

\

‘\

\
\

Phase p@.ne show~ng dynamics of controlled system for minimum rise
temperature-limltlng criterions (case C), where ~X (L-aNO) = ~.
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for controlled system for minimum rise time with temperature-

limlting criteri.onE (case C).
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Figure 11. - Illustration of curves for

NACA-Ia@aY -6-11-61- Iwo
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i=gz (t)
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t t.

“ =5=

J
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minimization of F(y, j,;, z,i,; ) dt.
o
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